RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2011

FIRST YEAR

Date : 19/12/2011 Time : 11am – 2pm **MATHEMATICS (General)** Paper : I

Full Marks : 75

[Use separate answer-books for each group]

Group-A

1.	Answer any five questions:		5 x 5 = 25
	a)	For any positive integer n (>1) show that all the solutions of $z^n = (1+z)^n$ represent points in the Argand plane, which are collinear.	5
	b)	Express i^i in the form $a+ib$, where a, b are real numbers. Prove that $sin(\log i^i) = -1$.	3+2
	c)	Find the values of k for which the equation $x^3 - 9x^2 + 24x + k = 0$ may have multiple roots. Find also the roots of the equation.	2+3
	d)	 (i) Show that the equation 3x⁵-4x²+8=0 has at least two imaginary roots. (ii) Using synthetic division, find f(x+1) if f(x) = x⁵+5x³+3x. 	3 2
	e)	If α, β, γ be the roots of $x^3 + qx + r = 0$, form the equation whose roots are $\alpha^2 + \beta^2$, $\beta^2 + \gamma^2$, $\gamma^2 + \alpha^2$. Hence find $(\alpha^2 + \beta^2) \cdot (\beta^2 + \gamma^2) \cdot (\gamma^2 + \alpha^2)$.	4+1
	f)	Solve the equation $x^3 + 6x^2 - 12x + 32 = 0$, using Cardan's method.	5
	g)	Define orthogonal matrix. Determine <i>a</i> , <i>b</i> , <i>c</i> when $A = \begin{pmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{pmatrix}$ is	
		orthogonal.	1+4
	h)	Find the inverse of the matrix $\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix}$ and use it to solve the system of	
		equations $x - y + z = 1$, $x + y + 2z = 0$, $2x - y + 3z = 2$.	3+2
		<u>Group–B</u>	
2.	An	swer any one question:	3x1 = 3

- a) Define Cartesian product of two sets. If $A = \{a, b, c, d\}$ and $B = \{a, b, c\}$ be two sets, determine $(A \times B) \cap (B \times A)$ and $(A \times B) \setminus (B \times A)$.
- b) In a group (G, \circ) if $a^2 = e$ for all $a \in G$, prove that G is commutative (e is the identity element of G).

3

3

Answer any two questions from Q. No. 3 to Q. No. 5:

- 3. a) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two mapping's defined as follows: $f(x) = x^2, x \in \mathbb{R}; g(x) = x - 2, x \in \mathbb{R}$, then show that $f \circ g \neq g \circ f$.
 - b) In a group (G, *), prove that a * b = a * c implies b = c for all $a, b, c \in G$. 3+2
- 4. Define subfield of a field. Is the ring $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix}; a, b \in Q \right\}$ a field under matrix addition and matrix multiplication? Justify your answer. 1+4
- 5. State Cayley–Hamilton's theorem. If $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, verify that A satisfies its own

characteristic equation.

- 6. Define subspace of a vectorspace. Show that the set $S = \{(x, y, z) : x + y z = 0, 2x y + z = 0\}$ is a subspace of \mathbb{R}^3 . Find the dimension of this subspace. 1+3+2
- 7. Find all the eigen values and any one of the eigen vectors of the matrix

$$\begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -1 & -4 & -1 \end{pmatrix}.$$
 3+3

- 8. a) Prove that the set of all even integers forms a commutative ring with respective to usual addition and multiplication.
 - b) Find *k* so that the vectors (1, -1, 2), (0, k, 3) & (-1, 2, 3) are linearly dependent in \mathbb{R}^3 .

Group-C

Answer any five questions :

9. State the geometrical interpretation of $\frac{dy}{dx}$.

A function f is defined by

$$f(x) = x, \qquad 0 < x < 1$$

= 2-x, 1 \le x \le 2
= x - \frac{1}{2}x^2, x > 2.

Show that f'(2) exists but f'(1) does not exist.

1 + 4

5x2 = 10

1+4

4

2

 $5 \times 5 = 25$

10. State Euler's theorem on homogeneous functions of two variables.

If
$$u = \cos^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$. 1+4

11. Let
$$f(x, y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2}, \ x^2 + y^2 \neq 0\\ 0, \ x^2 + y^2 = 0 \end{cases}$$

Examine whether $f_{xy}(0,0) = f_{yx}(0,0)$ or not.

12. If
$$y = (\sin^{-1} x)^2$$
 then prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$, where
 $y_n = \frac{d^n y}{dx^n}$.

13. If $u(x, y) = f(x^2 + 2yz, y^2 + 2zx)$ then prove that

$$\left(y^2 - zx\right)\frac{\partial u}{\partial x} + \left(x^2 - yz\right)\frac{\partial u}{\partial y} + \left(z^2 - xy\right)\frac{\partial u}{\partial z} = 0.$$
5

14. Show that the radius of curvature of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at an extremity of the major axis is equal to half of its Latus recturm.

- 15. Show that at any point of the curve $x^{m+n} = k^{m-n}y^{2n}$, the *m*th power of subtangent varies as the *n*th power of the subnormal.
- 16. Show that the pedal equation of the lemniscate $r^2 = a^2 \cos 2\theta$ si $r^3 = pa^2$. 5

5

5

5

5